
Rock Paper Scissors
Playing the Game with Markov Chains

Neil Pomerleau
Worcester Polytechnic Institute

Worcester, MA 01609
npomerleau@wpi.edu

Abstract—Though rock-paper-scissors is usually a game of
pure chance in which moves are selected at random, a player can
predict the opponent’s next move based on previous rounds of
play. An online version of the game played over 13,000 rounds
against human competitors and used this data to calculate
transition probabilities in a 10th-order Markov chain. The
virtual player was able to win 3.05% more of the rounds that did
not end in a draw than it would have won using the naïve method
of randomly selecting moves.

I. INTRODUCTION
The rules of rock-paper-scissors are simple: in each round,

two opponents simultaneously choose rock, paper, or scissors.
Paper beats rock, rock beats scissors, and scissors beats paper.
If the moves are chosen completely at random, neither player
should have an advantage and the probabilities of either player
winning or the round resulting in a tie are all equally likely.

However, a player could use previous rounds of play to
gain insight into the opponent’s strategy and attempt to predict
their next move, giving the player an advantage when selecting
his or her own move. In fact, after many rounds of play, a
player could learn transition probabilities from the opponent’s
previous moves to their choice for the next move.

Learning the subtle correlations between current state and
next state in what are essentially random choices is no easy
task. This strategy of examining transition probabilities would
not work against a player who makes truly random choices,
since each possible next state would be equally likely and all
transition probabilities would be the same. To say that current
state tells us anything about what to expect for a player’s next
move is to say that random human choices are probabilistic and
predictable to some extent.

Because these correlations are so subtle, the only way to
learn the transition probabilities and test the predictability of
these random choices is to accumulate substantial training data
through many rounds of play against real human players. This
data was collected by establishing a website that plays rock-
paper-scissors against people looking to test their skills against
a virtual player. Over the course of two weeks, the virtual
player had observed and stored over 13,000 rounds of play.

The virtual player then treats this entire database as a 10th-
order Markov chain, in which the current state is defined as up
to the previous ten rounds of play. The transition probability is
determined from the moves selected in previous rounds

matching the current state. The extent to which a previous
round’s state matches the current state increases the weight
given to that move in the calculation of the transition
probability. A previous round that matches all ten prior rounds
of the current state will be weighted much more strongly than a
previous round that matches just two or three prior rounds of
the current state.

Fig. 1. Screenshot of the website interface

Once the virtual player collected enough training data to
calculate transition probabilities on demand, it was able play
rounds against human players in which it attempted to predict
their next move. In 2,933 rounds of play that did not end in a
draw, the virtual player was able to win 53.05% of the time.

Fig. 2. Final results for the AI (after algorithm adjustment)

If the website had been using the naïve method of randomly
selecting moves, it would have won approximately 50% of the
time. This mean that the virtual player, using the transition
probabilities learned from the first 13,000 rounds of play, was
able to gain a 3.05% advantage over pure chance.

The next section describes Markov chains in general and
their applications, as well as other attempts to predict moves in
rock-paper-scissors using artificial intelligence. After the
problem is formally defined, the methodology of this project is
described to show how the work in this project builds upon
prior developments. Finally, the complete results of this project
are provided.

II. RELATED WORK
The basis of the theory for this project is the Markov

assumption, which claims that the current state only depends
on a finite number of previous states. Processes that satisfy the
Markov assumption are called Markov processes and can be
described as a Markov chain [1]. In the case of this project, the
game of rock-paper-scissors is considered to be a Markov
process, and the Markov chain is built over many rounds of
play.

The simplest form of a Markov process is a first-order
Markov process, which claims that the current state only
depends on the previous state and no more. Though it is
possible for the first-order assumption to be exactly true, it is
often used as an approximation [1]. For example, the
probability of rain today (the current state) can be
approximated based on whether it rained yesterday (the
previous state).

To improve upon the accuracy of the approximation from a
first-order Markov process, one can either increase the order of
the Markov process to consider more previous states or
increase the set of state variables [1]. For the purposes of this
project, the former is more practical.

This project is certainly not the first attempt to play rock-
paper-scissors using a virtual player. In fact, rpscontest.com
serves as an ongoing programming competition to see who can
develop the most effective algorithm for playing rock-paper-
scissors against human players. The website’s homepage cites
the game as “fundamental to the fields of machine learning,
artificial intelligence, and data compression” and even claims
that it might be “essential to understanding how human
intelligence works” [2]. The top-ranked algorithms have
winning percentages over 70-80%.

Two specific prior works have attempted to solve the
problem via data collection similar to that in this project. First,
the New York Times published an interactive online game that
has over 200,000 rounds of experience and an undisclosed
winning percentage [3]. After five rounds, it matches this exact
round history against rounds with other competitors to guess
your next move. In essence, it treats the game as a fifth-order
Markov process.

Fig. 3. Screenshot of the New York Times implementation [3]

Second, essentially.net hosts an online game that has
collected 497,933 rounds to date and has a winning percentage
of 59.82% [4], well above pure chance.

Fig. 4. Screenshot of statistics from the essentially.net implementation [4]

What the two prior works have in common is that they only
take into account exact matches when examining historical
data, and they both treat the game as a fifth-order Markov
process only. Though this project works from fewer rounds of
data, it improves upon the prior algorithms by allowing partial
matches in historical data and weighting this information
accordingly.

III. PROBLEM STATEMENT
It is difficult to predict an opponent’s next move in a game

of rock-paper-scissors because moves are typically chosen at
random. This project aims to determine transition probabilities
from previous rounds of play to an opponent’s next move,
exposing the predictability of human behavior in game play.

For the purposes of this paper, r and R represent a move of
rock for the human and AI players, respectively. Similarly, p
and P represent paper, and s and S represent scissors. A round
is represented as a pair of moves, e.g. (p, S). A game is
represented as a sequence of rounds, e.g. [(r, P), (p, S), (s, R)].

IV. METHODOLOGY
An online game of rock-paper-scissors was created,

allowing visitors to play the game against a virtual player. The
AI uses its experience against previous players to attempt to
predict the current opponent’s next move.

Fig. 5. Screenshot of the website interface

Each time a human player makes a move, the website
checks their move history and looks for moves that other
players have made after similar sequences of rounds. Since the
website treats the game as a 10th-order Markov process, it
considers up to the previous ten rounds of play. The moves for
matching sequences are weighed based on the extent that the
round history matches the current player’s round history,
resulting in the transition probability for the Markov chain.
This player’s move is then added to the gameplay database for
use in future rounds and games.

For each move the human player makes, the database stores
the sequence of up to ten previous rounds as the key to an
entry. The value of the entry is the round with the moves made
by the player and the AI.

TABLE I. EXAMPLE DATABASE ENTRIES (CONSECUTIVE ROUNDS)

History Move

[(r, R), (r, S), (p, P), (r, P), (p, P), (r, R), (s, R)] (r, R)

[(r, R), (r, R), (r, S), (p, P), (r, P), (p, P), (r, R), (s, R)] (r, R)

[(r, R), (r, R), (r, R), (r, S), (p, P), (r, P), (p, P), (r, R), (s, R)] (r, P)

When the AI needs to decide what move to play against the
user, it searches the database for matches of different history
lengths. Simulated rounds revealed that the AI’s move should
be included in the history for improved accuracy of the
probability calculation, and the weighting function of 3^length
was tuned via simulated rounds. These simulated rounds were
run by taking individual entries in the database and choosing
moves with variations of the algorithm examining the
remaining entries in the database. The results of these
simulated rounds are described in the results, and the core
algorithm is summarized next.

Algorithm 1: ProbableNextMove(allHistory, userHistory)

inputs: allHistory maps previous histories to previous moves
 userHistory the opponent’s history
returns: the opponent’s most probable next move
local: weights array that stores weighted likelihood of next

 move, initially 0 for all moves
 length the extent to which a previous round matches

 this one
begin
 for each (history, move) ∈ allHistory do
 length = 0
 while (history[length] == userHistory[length]) do
 length ß length + 1
 weights[move] ß weights[move] + 3 ^ length
 return index of max(weights)
end

This algorithm expands upon prior work with rock-paper-
scissors games that learn from rounds against real human
players. Existing implementations only consider up to five
previous rounds, and they ignore rounds that don’t perfectly
match all five previous rounds [3][4]. This rejection of
imperfect histories works when the collection of observed
rounds is large enough to cover the possible states (~200,000 -
500,000), but too many entries would be rejected in a relatively
small database (~10,000). This is especially true when the
number of previous states considered doubles to ten. In the
same way that likelihood weighting improves upon rejection
sampling when the number of particles and the likelihood of
any particular state are both relatively small [5], the algorithm
used in this project improves upon the algorithms used in
existing rock-paper-scissors implementations when the number
of observed rounds and the probability of any particular
sequence of rounds are both smaller.

V. RESULTS
Prior works have established that experience against human

players can give an AI an advantage in future rounds of play.
After almost 500,000 rounds of play, an implementation using
a 5th-order Markov chain and no weighting for was able to win
almost 60% of rounds against humans that did not end in a
draw. With this project, the question of whether a similar
advantage can be achieved after fewer rounds of experience is
addressed.

The initial 13,000 rounds of play used an experimental
weighting of 2^length in the ProbableNextMove algorithm and
ignored the AI’s own moves. Human players quickly learned
that by using the AI’s move in the immediate next round gave
players a slight advantage, winning 50.77% of rounds that did
not end in a draw.

Fig. 6. Real results for the AI after the first 13,000 rounds

The next iteration of the algorithm stored pairs of moves
(rounds) rather than just the player’s own sequence of moves,
taking the adversarial nature of the game into account. The
weighting was also adjusted to 3^length. Simulated rounds
showed that these changes would have resulted in a higher win
percentage for the AI.

Fig. 7. Simulated results for the AI, testing different algorithm variations

Simulated rounds showed that the AI would win
approximately 60% of rounds that did not end in a draw when
weighting was adjusted to 3^length and the AI’s moves were
considered as a part of the round history. The revised algorithm
was implemented and additional rounds were played against
real human players to see if the simulated results translated into
a real advantage. In the 3,993 rounds of play since the
algorithm was adjusted, the virtual player won 53.05% pof
rounds that did not end in a draw, giving it a 3.05% advantage
over pure chance.

Fig. 8. Real results for the AI after algorithm adjustment

An unexpected result was that the AI avoided draws with
the user much more than it would with random play, so most
rounds had a decisive winner. Though the AI fared well
considering the relatively small round observation pool
compared to prior works, it would probably benefit from
additional rounds of play against more human players.

VI. CONCLUSION
After adjusting the algorithm to optimize weighting and

account for the AI’s moves in the round history, the virtual
player was able to achieve a winning percentage of 53.05% in
rounds that did not end in a draw. Since this percentage
persisted afted thousands of rounds against human players, it is
likely statistically significant. Other AI implementations have
achieved better results after more rounds of play against
humans, but it is possible that this implementation would also
benefit from additional play. This project builds on prior works
that have shown that human behavior in a random game is not
entirely random, and it is predictable to the extent that an AI
can begin to predict non-deterministic decisions through
experience. Through the game of rock-paper-scissors, this AI
implementation has gained some insight into human thought
processes and decision making – a field that will surely be
explored with future AI developments in the years to come.

ACKNOWLEDGMENT
Professor Dmitry Berenson and his Fall 2013 Artificial

Intelligence class at WPI (CS 534) were invaluable for their
guidance when deciding how to adjust the algorithm.

REFERENCES
[1] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3rd ed. Upper Saddle River: Prentice Hall, 1995, pp. 568-570.
[2] B. Knoll. (2011, May). Rock Paper Scissors Programming Competition

[Online]. Available: http://www.rpscontest.com/
[3] G. Dance and T. Jackson. (2010, Oct 7). Rock-Paper-Scissors: You vs.

the Computer [Online]. Available:
http://www.nytimes.com/interactive/science/rock-paper-scissors.html

[4] S. Bayern. (2001, Mar 5). Rock, Paper, Scissors: Humans against AI
[Online]. Available: http://www.essentially.net/rsp/index.jsp

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River: Prentice Hall, 1995, pp. 532-533.

